BACKGROUND

- Diakine[™] DK2¹⁰ (EGFR) couples wild-type IL-2 (wtIL-2) to an IL-10 high affinity variant via a scaffold (scFV) that binds Epidermal Growth Factor Receptor (EGFR) (Fig 1)
- Coupling wtIL-2 with IL-10 removes the toxicity associated with wtIL-2 and improves the potency of the molecule, while targeting the molecule to the tumor cell surface within the tumor microenvironment (TME) improves effectiveness • Utilizing an *ex vivo* response assay, biomarkers demonstrating safety and potency were examined. This assay corroborates
- patient response in the phase 1 (NCT05704985) dose escalation study

METHODS

- Subjects with relapsed/refractory solid tumors known to express EGFR were enrolled (Table 2)
- Dose escalation through 16 mg three times weekly (TIW) self-administered subcutaneous injection (Fig 2)
- Evaluation of biomarkers for safety and potency
- Fold changes evaluated at baseline to highest change or day 22
- Data presentation is restricted to the initial 31 patients, with a data cut-off of September 20, 2024

Age (years)	Median 65; Range 45-79
Sex	Male n=16 (52%); Female n=15 (48%)
Diagnosis	RCC n=11 (36%) CRC n=9 (29%) NSCLC n=6 (19%) PDAC n=5 (16%)
Race	White n=17 (55%) African American n=4 (13%) Asian n=2 (6%) Native Hawaiian n=1 (3%) Unreported n=7 (23%)
Prior Therapy	Chemotherapy: 31/31 (100%) CPI: 15/31 (48%)
Mutational Burden	14 (100%) of CRC/PDAC-MS Stable

(EGFR) administered taneously (SC)	D1, 3, 5 (TIW) or D1, 4 (BIW) every week (cycle = 3 weeks)	
sampling	Cycle 1: D1-5, D8; Cycle 2: D1-2; then concurrent with response evaluation	
nse Evaluation	CT/MRI every 9 weeks	

DK2 ¹⁰ (EGFR) administered subcutaneously (SC)	D1, 3, 5 (TIW) or D1, 4 (BIW) every week (cycle = 3 weeks)
PK/PD sampling	Cycle 1: D1-5, D8; Cycle 2: D1-2; then concurrent with response evaluation
Response Evaluation	CT/MRI every 9 weeks

Figure 3 – IFN Predictive Response Assay

- CD8+ T cells are model antigen bulk activated for 3 days, exposed to DK2¹⁰ (EGFR) for 3 days, then triggered with anti-CD3 to induce Interferon- γ (IFN γ) secretion Secreted (Fig 3)
- Secreted IFN γ levels denote responders (high) vs. non-responders (low) • The genetic differences between the groups are under investigation

HYPOTHESES:

- Cytokine profile: IFN γ will be induced without significant upregulation of other inflammatory cytokines that would result in VLS or CRS. IP-10, wtIL-2Rα, IL-18, and IL-18 binding protein will also increase
- wtIL-2 will induce IL-5 and result in eosinophilia • Peripheral T cell and NK cell proliferation will be induced without
- upregulation of Tregs
- Immune system reprogramming will enable new T cell and NK cell anti-tumor response and can be measured by an increased in new T cell clones

Comparative Assessment of Immune Biomarkers from Phase 1 First-in-Human Trial Treating Advanced Cancer Patients with DK2¹⁰ (EGFR) to *ex vivo* DiakineTM Response Assay

Abdul Rafeh Naqash¹, Adanma Ayanambakkam¹, Alexander I. Spira², Siqing Fu³, Syed Mohammad Ali Kazmi⁴, Abhishek Tripathi⁵, Douglas W. Orr⁶, Aurelien Marabelle⁷, David Langan⁸, Alice Hsu⁸, Jacob McCright⁸, Steven Dudics⁸, Fatima Hamdan⁸, Ben George⁸, Phillip Kuri⁸, Allison Long⁸, Sawyer R. Smith⁸, Debra A. Kientop⁸, Stanley R. Frankel⁸, John B. Mumm⁸ ¹Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK; ²NEXT Virginia, Fairfax, VA; ³Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴UT Southwestern Medical Center, Dallas, TX; ⁵City of Hope Comprehensive Cancer Center, Duarte, CA; ⁶ Mary Crowley Cancer Research, Dallas, TX ; ⁷Gustave Roussy, Drug Development Department (DITEP), Villejuif, France; ⁸Deka Biosciences, Germantown, MD

Synergistic with wtIL-2 stimulates CD8+ T/NK cells

tumors that are responsive to wtlL-2 and IL-10

Table 1 - Treatment Schedule

Figure 4 – Results of Response Assay: CD8+ T Cell Dose Response to DK2¹⁰ (EGFR)•

Figure 6 – Cytokine Profile Across Cohorts

- required (Fig 7)

Figure 8 – Induction of wtIL-2 Biomarkers in All Cohorts

RESULTS

Figure 9 – Induction of Checkpoint Inhibitors in Plasma of DK2¹⁰ (EGFR) Treated Patients

Figure 10 – Increase in CD3+ and NK Cell Proliferation Without **Increase in Tregs**

- with Ki-67 (an indication of proliferation) (Fig 11)
- expansion and enhanced repertoire diversity starting at Day 5 (Fig 12)

Figure 12 – Clonal **Expansion** and **Enhanced Repertoire Diversity in Immune** "Responders"

CONCLUSIONS

- or statistically significant increase in Tregs
- (EGFR) in patients
- validates the Diakine[™] platform.

Acknowledgements:

• We extend our appreciation to study staff, participants and their families. Contact: Deb Kientop (kientopd@dekabiosciences.com)

- The magnitude of IFN γ induced was higher than benchmarks reported for wtIL-2, without inducing TNFa
- Combining IL-10 with wtIL-2 uncouples IFN γ induction from IL-6, IL-1 β , and TNF α

Evidence of wtIL-2 signaling at all dose levels

Pre-clinical studies defined target AUC > 150 h*ng/mL for clinical

- AUC exposure achieved in 2 mg dose cohort of ~145 h*ng/mL with confirmed 6-month stable disease (Fig 5)
- Exposures are ~4X PEG-IL-10 and 2X high dose wtIL-2 AUC
- On treatment patient plasma showed IFN γ increased 20-fold from cohort 1 to 3 but plateaued at the 8 mg dose (Fig 6)

• Asymptomatic eosinophilia was observed but no clinical intervention

• Treatment with DK2¹⁰ (EGFR) leads to the induction of wtIL-2 biomarkers IFN γ , wtIL-2R α , IP-10 and IL-5 in all cohorts (Fig 8) • GzmB and perforin increased dramatically in plasma, but not CRSassociated cytokines TNF α , IL-1 β , and IL-6

Abstract # 43

Trial Registration: (NCT05704985)

• DK2¹⁰ (EGFR) induces expansion of CD3+ T and NK cells, but not Tregs in patients exhibiting stable disease (Fig 10) • wtIL-2 and IL-10 are known to control Granzyme and perforin, which are increased in patient T and NK cells along

• TCRβ sequencing was conducted in a subset of patients showing immune activation correlated with clonal

• Changes in peripheral repertoire are correlative with precision patient selection assay results

Table 4 – Hypotheses Proven

Hypothesis:	Clinical Proof:
Achieve therapeutic exposure level of 200 (h*ng/mL)	Minimal therapeutic exposure achieved in dose levels 2-4 (4-8 mg TIW)
Evidence of wtIL-2 signaling	Eosinophilia without clinical sequelae
Ameliorate cytokine release syndrome (CRS)	Low frequency, low grade CRS reported Low frequency, low grade hypotension reported No pro-inflammatory cytokines associated with CRS (IL-1β, IL-6, TNFα)
Signaling of immune response	Induction of peripheral CD3+ T and NK cell proliferation/accumulation but not Tregs and new T cell clones expanding

• The immune response biomarker profile in patients in the Response Assay to DK2¹⁰ (EGFR) and the ontreatment assessment demonstrated that coupling wtIL-2 with IL-10 and targeting within the TME results in potent immune activation without inducing cytokines that drive significant systemic toxicity

• These data confirm the potent, balanced, and targeted hypothesized mechanism of action of DK2¹⁰

• This proof of mechanism supports further clinical evaluation of DK2¹⁰ (EGFR) in RCC and NSCLC and

• Further exploration of DK2¹⁰ (EGFR) to optimize monotherapy dose selection is ongoing before proceeding to evaluate clinical activity in expansion cohorts and relevant combinations

